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Abstract
Some new exact solutions of the (2 + 1)-dimensional asymmetric Nizhnik–
Novikov–Veselov equation are presented using the bilinear method. The
solutions to describe the interactions between two dromions, between a line
soliton and a y-periodic soliton, and between two y-periodic solitons are
included in our results. The detailed behaviour of the interactions is illustrated
both analytically and graphically. Our analysis shows that the forms of soliton
solutions and interacting properties between two solitons are related to the
forms of the parameters and interaction constants.

PACS number: 05.45.Yv

1. Introduction

The recent development of nonlinear wave theory clarifies the role of the ‘soliton’ in various
systems [1]. Solitons are stable and the interactions between them affect only the phase
shifts. Therefore, solitons are regarded as the fundamental structures in nonlinear integrable
systems. The spatial structures of solitons are usually the solitary waveforms whose amplitudes
tend to zero as x −→ ±∞, or the kink forms whose amplitudes tend to two different
constants as x −→ ±∞. The soliton structures and their properties of (1 + 1)-dimensional
integrable nonlinear evolution equations have been very well understood. However, the soliton
structure in higher spatial dimensions continues to be much more intricate. Recently, since the
pioneering work of Boiti et al [2], the study of the exponentially localized soliton solutions
called dromions has been attracting the attention of physicists and mathematicians. Usually,
dromion solutions are driven by two or more nonparallel straight-line ghost solitons [3, 4].
There also exist some dromion solutions of the physical fields for one type of nonlinear models
such as the Davey–Stewartson (DS) and Nizhwik–Novikov–Veselov (NNV) [5]. However,
for other types of equations such as the Kadomtsev–Petviashvili (KP) and the breaking soliton
equations, the dromion solutions exist only for some suitable potential of the fields [6].
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In this paper, we are interested in the structures and interactions of the soliton for (2 + 1)-
dimensional integrable systems. It is well known that the soliton interactions of (1 + 1)-
dimensional integrable models are elastic. This means that there is no exchange of energy
(no changes of shape and velocity) among interacting solitons. However, some different
results have been reported for (2 + 1)-dimensional integrable systems. Consequentially, the
dromion interactions are inelastic for the DS equation [7], but for the Nolacal–Bussinesq
(NLBQ) equation and Sawada–Kotera (SK) system they are elastic [8, 9]. Here, we hope
to understand the reasons why the interaction between dromions is elastic for some models
and inelastic for others. Because it is difficult to solve higher-dimensional nonlinear models,
it becomes difficult to reveal the structures and properties of interaction of the soliton in
higher-dimensional models. There is some wealth of methods for finding special solutions of
higher-dimensional integrable models. Two important methods are the bilinear method and
variable separating approach. However, there are some limitations when we deal with some
concrete problems using the two methods. For example, for the asymmetry NNV (ANNV)
equation, some solutions, which are used to describe the interactions between two dromions
for physical field u, between a line soliton and a y-periodic soliton, and between two y-periodic
solitons for physical field v, cannot be obtained by the standard Hirota bilinear method because
of the forms of the interaction constants. Even using the variable separating approach, we
cannot obtain the solution to describe the interaction between two y-periodic solitons due to
the complexity of the solution.

The bilinear method is regarded as a good method to get soliton structures. However, some
coefficients in the multi-soliton solution form presented by Hirota may be free coefficients.
With the help of the bilinear method, after assuming the forms of solution according to the
research needs, we obtain abundant soliton structures about the ANNV equation. Using these
exact solutions the phenomena of interaction are discussed in detail.

The paper is organized as follows. In section 2, some exact solutions of the ANNV
equation are presented with the help of the bilinear method. The interactions between two
dromions, between a line soliton and a y-periodic soliton and between two y-periodic solitons
are discussed in section 3, while a summary and a discussion are in section 4.

2. Exact solutions of the ANNV equation

The ANNV equation

ut + uxxx + 3[uv]x = 0 ux = vy (1)

may be considered as a model for an incompressible fluid where u and v are the components
of the (dimensionless) velocity [10]. The spectral transformation for this system had been
investigated in [5, 11]. This system may be considered as a generalization [12] to (2 + 1)
dimensions of the results from Hirota and Satsuma [13]. The non-classical symmetries,
Painlevé property and similarity solutions of the system were investigated by Clarkson and
Mansfield [14]. Equation (1) has bilinear form [15]

u = 2(log f )xy v = 2(log f )xx (2)(
DyDt + DyD

3
x

)
f · f = 0. (3)

In [16], Radha and Lakshmanan studied the dromion solution of (3). They gave two dromion
solutions with the following special form,

u = −2(log f )xy f = 1 + exp(ξ1) + exp(ξ2) + exp(ξ3) + K(exp(ξ1 + ξ2) + exp(ξ2 + ξ3))

ξ1 = k1x − k3
1 t + c1 x2 = l1y + c2 x3 = k2x − k3

2 t + c3

(3.1)
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where c1, c2, c3 are all constants. In [17], Lou extended the work of [16], presented the
assumtion that the parameters ki, ci in equation (3.1) are functions of y, and obtained more
abundant dromion structures. He obtained the conclusion that the dromions can be driven not
only by some perpendicular line ghost solitons but also by some non-perpendicular line and
curved line ghost solitons.

Although some special dromion solutions have been given by [16, 17] the interactions
between two dromions have not been studied in their works. In order to study interacting
phenomena between two solitons, we should find more solution structures.

It can be proved that equation (3) possesses the standard multi-soliton solution form
proposed by Hirota [18]. Here, we write down the three-soliton solution expression

f = 1 + exp(η1) + exp(η2) + exp(η3) + a12 exp(η1 + η2) + a13 exp(η1 + η3)

+ a23 exp(η2 + η3) + a12a13a23 exp(η1 + η2 + η3) (4)

ηi = kix + liy + ωit + ηi0 liωi + lik
3
i = 0 (5)

aij = −A(pi − pj )

A(pi + pj )
= − (li − lj )

(−k3
i + k3

j + (ki − kj )
3
)

(li + lj )
(−k3

i − k3
j + (ki + kj )3

) . (6)

If we hope to obtain the solution to describe the interaction between two dromions for field
component

u = 2(log f )xy (7)

from equations (4)–(6), the parameters {ki, li} (i = 1, 2, 3) must be taken as {(k1, 0), (k2, 0),

(0, l3)}. One can easily see from the above expression that one cannot obtain the solution
of two-dromion interaction for u and the solution to describe the interaction between a line
soliton and a y-periodic soliton for v because of the form of aij . For the same reason, we
cannot get the solution to describe the interaction between two y-periodic solitons for v.

If we assume the solution of equation (3) has the following form

f = 1 + exp(η1) + exp(η2) + exp(η3) + a12 exp(η1 + η2) + a13 exp(η1 + η3)

+ a23 exp(η2 + η3) + m exp(η1 + η2 + η3) (8)

η1 = k1x + ω1t + η10 η2 = k2x + ω2t + η20 η3 = l3y + ω3t + η30 ωi = −k3
i

(9)

we find when

m = a12 + (a13 − a23)
k1 − k2

k1 + k2
(10)

equation (8) with (9) is a solution of equation (3). It describes the interaction between two
dromions for field component u.

If we assume that the solution of (3) possesses the form of equation (8) and

η1 = k1x + iδ1y + ω1t η2 = k1x − iδ1y + ω2t
(11)

η3 = k3x + ω3t a13 = a23 m = a12a13a23

then when

ω1 = ω2 = −k3
1 ω3 = − k3

k2
1

(−k2
3k

2
1 + 3k4

1 − 3δ2
1

)
(12)

a13 = a23 = −2k3
1k3 − l2

1 + k2
1k

2
3 + k4

1

k2
3k

2
1 + k4

1 + 2k3
1k3 − l2

1
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the solution (8) with (11) and (12) is a solution to describe the interaction between a line
soliton and a y-periodic soliton for field component v. It can be written as

v = 2(log f )xx (13)

f = 1 + 2 exp(ξ1) cos(η1) + exp(ξ2) + a12 exp(2ξ1)

+ 2a13 exp(ξ1 + ξ2) cos(η1) + a12a
2
13 exp(2ξ1 + ξ2) (14)

where

ξ1 = k1x − k3
1 t ξ2 = k3x + ω3t η1 = δ1y ω3 = − k3

2k2
1

(−k2
3k

2
1 + 3k4

1 − 3δ2
1

)
.

(15)

Taking the following assumption in equation (3)

f = 1 + exp(η1) + exp(η2) + exp(η3) + exp(η4) + a12 exp(η1 + η2) + a13 exp(η1 + η3)

+ a14 exp(η1 + η4) + a23 exp(η2 + η3) + a24 exp(η2 + η4)

+ a34 exp(η3 + η4) + a12a13a23 exp(η1 + η2 + η3) + a12a14a24 exp(η1 + η2 + η4)

+ a23a24a34 exp(η2 + η3 + η4) + a13a14a34 exp(η1 + η3 + η4)

+ a12a13a14a23a24a34 exp(η1 + η2 + η3 + η4)

η1 = k1x + iδ1y + ω1t η2 = k1x − iδ1y + ω2t

η3 = k2x + iδ2y + ω3t η4 = k2x − iδ2y + ω4t (16)
when

ω1 = ω2 = −k3
1 = −ω11 ω3 = ω4 = −k3

2 = −ω22 (17)

a13 = a24 = (δ2 − δ1)(k2 − k1)

(δ2 + δ1)(k2 + k1)
a23 = a14 = (δ2 + δ1)(k2 − k1)

(δ2 − δ1)(k2 + k1)
(18)

the solution (16) describe the interaction between two y-periodic solitons for the physical field
v. It can be expressed as

v = 2(log f )xx (19)

f = 1 + a12 exp(2ξ1) + 2 exp(ξ1) cos(η1) + a34 exp(2ξ2) + 2 exp(ξ2) cos(η2)

+ 2 exp(ξ1 + ξ2)(a13 cos(η1 + η2) + a23 cos(η2 − η1))

+ 2a12a13a23 exp(2ξ1 + ξ2) cos(η2) + 2a34a13a23 exp(2ξ2 + ξ1) cos(η1)

+ a12a34a
2
13a

2
23 exp(2(ξ1 + ξ2)) (20)

where
ξ1 = k1x − ω11t ξ2 = k2x − ω22t η1 = δ1y η2 = δ2y. (21)

3. Interaction between two solitons

3.1. Interaction between two dromions

In this subsection, we consider the interaction between two dromions about field u expressed
by (7) and (8) with (9) and (10). When we assume that k1 > 0, k2 > 0 and ω2/k2 > ω1/k1,
we obtain the expressions for two separated dromions before interaction
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u1 = 2(log f1)xy (22)

f1 = 1 + exp(η1) + exp(η3) + a13 exp(η1 + η3) (23)

u2 = 2(log f2)xy (24)

f2 = exp(η1)

(
1 + exp(η3 + ln a13) + exp(η2 + ln a12) + a23 exp

(
η2 + η3 + ln

m

a23

))
(25)

and the expressions for the two dromions after interaction

u3 = 2(log f3)xy (26)

f3 = exp(η2)

(
1 + exp(η1 + ln a12) + exp(η3 + ln a23) + a13 exp

(
η1 + η3 + ln

m

a13

))
(27)

u4 = 2(log f4)xy (28)

f4 = 1 + exp(η2) + exp(η3) + a23 exp(η2 + η3). (29)

Taking into account that u is unchanged even if f is multiplied by exp(ax + b) with a and b
independent of x, we have only to consider the form of f . From (22)–(29), one can see that if
m �= a12a13a23, the shapes of the two dromions are changed after interaction. However, when
parameter k1 is selected as

k1 = k2
a12 + a23 − a13 − a12a13a23

a12a13a23 + a23 − a12 − a13
(30)

the interacting constant m expressed by (10) equals a12a13a23. In this case, the shapes of the
two dromions do not change when they are interacting, but there is a phase shift determined
by the interacting constants aij .

Figure 1 shows the interacting plots of two dromions, which are formed by three ghost
line solitons about the physical field u, where the three solitons are determined by

η1 = 58
23x − 195 112

12 167 t η2 = 2x − 8t η3 = 3
2y (31)

and coupled coefficients aij are selected as

a12 = 3
2 a13 = 1

3 a23 = 5
2 . (32)

In equation (31), k1 comes from (30), according to equation (10), one may find m = a12a13a23.
Obviously, from figure 1, we can see that the shapes of the two dromions are unchanged after
interaction.

Figure 2 also shows the interacting plots of two dromions for physical field u, where three
solitons are formed by

η1 = 2x − 8t η2 = x − t η3 = 3
2y (33)

and coupled coefficients aij are selected as

a12 = 3
2 a13 = 4

3 a23 = 5
2 . (34)

According to equations (33), (34) and (10), we find m = 17
9 �= a12a13a23. From figure 2 we

see clearly that the shapes of the two dromions are different before and after interaction.
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(c)

(b)(a)

Figure 1. The interacting plots between two dromions about field u determined by equation (7) with
(8)–(10) and (30) (m = a12a13a23). The solitons are characterized by η1 = 58

23 x − 195 112
12 167 t, η2 =

2x − 8t, η3 = 3
2 y. The time in the figures is: (a) t = −3, (b) t = 0, (c) t = 3.

3.2. Interaction between a line soliton and a y-periodic soliton

In this subsection, we will discuss the interaction between a line soliton and a y-periodic
soliton about the field component v expressed by (13). When we assume that k1 > 0, k3 > 0
and ω3/k3 > ω1/k1, we obtain the expressions for a separated line soliton and a periodic
soliton before and after interaction

f (ξ1, η1) = 1 + 2 exp(ξ1) cos(η1) + a12 exp(2ξ1) (35)

f (ξ2, a13) = a12 exp(2ξ1)
[
1 + a2

13 exp(ξ2)
]

(36)

and

f (ξ1, η1, a13) = exp(ξ2)
[
1 + a12a

2
13 exp(2ξ1) + 2a13 exp(ξ1) cos(η1)

]
(37)

f (ξ2) = 1 + exp(ξ2) (38)

respectively, where subscripts 1 and 2 denote the coordinates of the y-periodic soliton and
the line soliton, respectively. Based on the same reasoning as in section 3.1, we have only to
consider the form of f . In a nutshell we have the following results,

[f1(ξ1, η1), f2(ξ2 + 2�)] −→
{

[f1(ξ1 + �, η1), f2(ξ2)] for a13 > 0

[f1(ξ1 + �, η1 + π), f2(ξ2)] for a13 < 0
(39)

where � = log|a13|. This expression shows that the phase shift due to the interaction
is determined only by the coefficient a13. The phase shift in the propagating direction is
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(c)

(b)(a)

Figure 2. The interacting plots between two dromions about field u determined by equation (7) with
(8)–(10) (m �= a12a13a23). The solitons are characterized by η1 = 2x − 8t, η2 = x − t, η3 = 3

2 y.
The time in the figures is: (a) t = −3, (b) t = 0, (c) t = 3.

determined by the magnitude of a13 while that in the transverse direction is determined by
the sign of a13. The sum of the phases in the propagating direction of the before-interaction
solitons is twice that of the after-interaction solitons because the periodic soliton is madeup of
two line solitons.

Figure 3 shows the interaction between a line soliton and a y-periodic soliton for
0 < a13 < 1, where the function f is determined by (14), and

ξ1 = 3
2x − 27

8 t ξ2 = 2x + 1
4 t η1 = 3

2y. (40)

Because 0 < a13 � 1, the interaction is the long-range repulsive interaction. As the line
soliton is approaching the periodic soliton, the frontal part of the line soliton to the periodic
soliton begins to grow, forming the hump on the peak, and the other part appears to be smaller.
At the same time the trough of the periodic soliton increases, as a result, it looks fatter. While
they keep a distance from each other, they seem to exchange energy and momentum through
their tails in the propagating direction. Then they depart from each other recovering their
original form.

3.3. Interaction between two y-periodic solitons

Now, we begin to discuss the interaction between two y-periodic solitons. If we assume that
k1 > 0, k2 > 0, ω22

k2
> ω11

k1
we obtain the expressions for two separated y-periodic solitons
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(c)

(b)(a)

(e)

(d )

Figure 3. The interacting plots between a line soliton and a y-periodic soliton about field v

determined by (13) with (14) and (15), where (k1, δ1, k3) = (3/2, 3/2, 2); a13 = 0.094 34 and
(ω3/k3, ω1/k1) = (1/8, −9/4); (a) t = −5, (b) t = 0, (c) t = 0.2, (d ) t = 0.5, (e) t = 5.

before and after interaction

f (ξ1, a13a23, η1) = a34 exp(2ξ2)
(
1 + 2a13a23 exp(ξ1) cos(η1) + a12a

2
13a

2
23 exp(2ξ1)

)
(41)

f (ξ2, η2) = 1 + 2 exp(ξ2) cos(η2) + a34 exp(2ξ2) (42)

and

f (ξ1, η1) = 1 + 2 exp(ξ1) cos(η1) + a12 exp(2ξ1) (43)

f (ξ2, a13a23, η2) = a12 exp(2ξ1)
(
1 + 2a13a23 exp(ξ2) cos(η2) + a34a

2
13a

2
23 exp(2ξ1)

)
. (44)
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(c)

(b)(a)

(d )

Figure 4. The interacting plots between two y-periodic solitons about field v determined by (19)
with (20) and (21), where (k1, k2, δ1, δ2) = (3/2, 1, 1, 2), a13a23 = 1/25, (ω22/k2, ω11/k1) =
(1, 4/9); (a) t = −25, (b) t = 1, (c) t = 2, (d ) t = 30.

For the same reason as in section 3.1 we have only to consider the form of f . We have the
following results

[vp1(ξ1 + �, η1), vp2(ξ2, η2)]−→
{

[vp1(ξ1, η1), vp2(ξ2 + �, η2)] for a13a23 > 0

[vp1(ξ1, η1 + π), vp2(ξ2 + �, η2 − π)] for a13a23 < 0

(45)

where

vpj = 2(log fpj )xx (46)

which is the y-periodic soliton solution and � = log |a13a23|. This expression shows that the
phase shift due to the interaction is determined only by the product a13a23. The phase shift in
the propagating direction is determined by the magnitude of a13a23, while that in the transverse
direction is determined by the sign of a13a23. The sum of the phases of the before-interaction
soliton is equal to that of the after-interaction soliton as the usual soliton equations. It should
be noted that the interaction term which is related to the phase shift is always positive in the
KdV-type equation.

Figure 4 gives the interacting plots of two y-periodic solitons. In figure 4, 0 < a13a23 < 1,
i.e. the case of repulsive interaction. The heights of the humps of both solitons are almost the
same in this case. As two periodic solitons approach each other, two humps of the first soliton
begin to move in the transverse direction so as to merge into one hump and every hump of
the second soliton begins to separate in the transverse direction as shown in figure 4. While
they keep a distance from each other, they seem to exchange energy and momentum through
their tails in the propagating direction. Through this interaction the first soliton becomes the
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second soliton and the second soliton becomes the first soliton. Then they depart from each
other recovering their original form. Note that they do not interpenetrate each other.

4. Summary and discussions

With the help of the bilinear method, we obtain some solutions of the ANNV equation which
describes the interaction between two dromions for physical field u, the interaction between
two y-periodic solitons and that between a line soliton and a y-periodic soliton for physical
field v, respectively. We have discussed these interactions both analytically and graphically.
For the first type of interaction, if the solution of the bilinear equation possesses the Hirota
standard solution form including m = a12a13a23 and aij �= 0, field component u = 2(log f )xy

describes the elastic interaction, but when coupled coefficient m �= a12a13a23 (aij �= 0) u
describes the inelastic interaction. It should be noted that coupled coefficients aij in the above
discussion may be arbitrary constants which the equation allows. For the solution to describe
the interaction between two y-periodic solitons is a new solution. It cannot be obtained from
the standard Hirota bilinear method and the variable separation approach. However, it is the
solution obtained by us using some special assumptions in the bilinear method. The interaction
between two y-periodic solitons is related to the interaction coefficient product a13a23. The
magnitude of a13a23 is related to the phase shift in the propagating direction and its sign is
related to that in the transverse direction. So, in the case of a13a23 > 0 for the ANNV equation,
the phase shift in the transverse direction does not exist. We call the interaction attractive if
|a13a23| > 1 is satisfied and repulsive if |a13a23| < 1. The long-range repulsive interaction is
also discussed in this paper.

We know that the bilinear method and variable separation procedure are good approaches
to find exact solutions of an integrable model. However, for some special types of equations
such as the ANNV equation, NNV equation etc we cannot obtain special solutions and
complex solutions from the standard Hirota bilinear method in which the coupled coefficients
accord with the definition of Hirota and the variable separation procedure. Because there are
fixed structures for some special soliton solutions some special assumptions can be used to
obtain special solutions which are difficult to obtain using other methods. We hope these
special procedures can be used to obtain more significant special solutions for more nonlinear
equations. Whether the solution to describe the interaction between a y-periodic soliton and an
algebraic soliton etc can be obtained via the procedure presented by us will be further studied.
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